Putting last month’s - :
PC breadboard S
hardware to work.

BUILD THIS

PCI/O
BREADBOARD

DAVE DAGE

SOME PEOPLE MASTER HARDWARE,
others master software—but
few master both. Those who do.
however, can expect great re-
wards. Last month'’s project was
building the hardware: a PC in-
terface card and a breadboard
system with ten fully decoded
and latched input/output (I/O)
ports. This month's article is
about the software required to
make the hardware do some-
thing interesting. Along the
way, you'll learn how to bread-
board some hardware for dem-
onstrating input and output
capabilities, and you'll see soft-
ware examples in three popular
computer languages: BASIC,
assembler, and C.

It will be helpful if you have
had some experience with pro-
gramming in at least one of
those languages. But if not,
don't worry—this presentation
allows for inexperience. If you
are just beginning to program,
it's better to learn two—or
more—languages at the same
time. Most programming lan-
guages do the same things;
learning several will help you
place the statements and pro-
cedures of each in perspective.

Hardware setup

To begin, breadboard the cir-
cuit shown in Fig. 1. The sche-
matic specifies the resistor net-
works, a DIP switch, and LED
bargraph indicator, but any dis-
crete components that are elec-

trically equivalent can be sub-
stituted. Figure 2 shows how to
mount the components on the
breadboard.

The input circuit connects to
port four, which appears at ad-
dress 260 decimal (0104 hex) if
you configured the interface
card at the default base I/O port
address. Resistors R2a—R2h
pull all eight data lines low. By
switching the poles of the DIP
switch, you can pull each line
high through resistors
R3a-R3h.

The output circuit also con-
nects to port four (260 decimal,
0104 hex). The output lines can
drive each of the eight LEDs
that are tied to ground through
current-limiting resistors
Rla-R1h. An LED will turn on
when the associated data line
goes high, and off when it is low.

Now let’s see how to use the
software to read the switches
and light the lights. First I'll dis-
cuss the BASIC language, then
assembler, and then C.

BASIC prog

BASIC, as supplied with
DOS, is an interpreted lan-
guage. When you run a BASIC
program, you are running the
large BASIC.EXE program,
which takes each statement one
at a time, “interpreting” what it
means, and then executing it.

As with any programming
language, BASIC has advan-
tages and disadvantages.
BASIC's advantages include
simple setup; most housekeep-

ing chores are handled for you
automatically by the BASIC in-
terpreter. In addition, testing
and experimenting with BASIC
is quick and easy because you
can execute code in the immedi-
ate mode, rather than running
“source code” through a pro-
gram called a compiler.

BASIC also has disadvan-
tages that include slow speed,
awkward bit-level manipula-
tion, and variables that are al-
ways global. An interpreted
BASIC program is much slower
than an equivalent compiled
program in almost any other
language. Bit-level manipula-
tion can be troublesome for peo-
ple who want to work directly
with hardware. The problem
with global variables is that
simple typographical errors
make it easy to create hard-to-
debug problems, particularly in
those large programs with lots
of variables.

Despite those disadvantages,
BASIC is ideal in situations
where speed is not a require-
ment, the program is not large,
and quick development and
testing are paramount.

Listing 1 shows a simple
BASIC program that will read
the input port, transfer the data
to the output port, and then re-
peat the process indefinitely.
The overall effect of this pro-
gram is that the switches di-
rectly control the LEDs. (Press
Ctrl-Break when you've had
enough.) :

The objective of this program

MON Soiuoie|3 ‘#661 AN

Electronics Now, July 1994

BAR GRAPH
OR DISCRETE LEI

R1a-R1h
8 x 2200

8 x 33Q

-S1a-S1h
B x SPST

R2a-R2h
8x 1K

ko

FIG. 1—SCHEMATIC DIAGRAM OF TEST CIRCUIT: The input port reads an eight-
position DIP switch, and the output port drives an eight-LED bargraph.

is to show that the computer
really controls the connection
between the two ports. You
could write a program that
would switch a light on or off
only after a password has been
entered. Similarly, you could
write a program so that the
switch that controls a par-
ticular LED could be changed to
control a completely different
LED without rewiring the
board. Try doing something like
that without using software—
it’s next to impossible!

Another possibility would be
to assign the input and output
ports for completely separate
purposes. For example, the DIP
switch could serve as eight ad-
ditional function keys for a spe-
cial program, and the LEDs
could function as a bargraph
displaying, for example, the
time remaining in some par-
ticular process.

Of course, it's also possible to
have some fun with the circuit.
Listing 2 provides one example.
(Depending on the speed of your
computer, you might have to ad-
Just the value of the time delay
in line 190.)

Assembly language
programming

If BASIC represents one end
of the programming-language
spectrum, assembler or assem-
bly language represents the
other. Where BASIC is slow and
cumbersome, assembler is
quick and lithe. On the other
hand, it's easy to perform tests
and do experiments in BASIC,

LISTING 1—SIMPLE TEST
PROGRAM

10 N = INP (260)
20 OUT 260, N
30 GOTO 10

but assembler requires careful
forethought in planning those
tasks. However, it's easy to con-
trol the hardware in assembler.

Every microprocessor has its
own assembly language. Intels
80X86 family has one,
Motorola’s 68XXX family has
another, and so on. Moreover,
within a given microprocessor
family, successive additions to
the family usually call for new
instructions specific to that
more advanced device.

Some microprocessors have a
single address space that is oc-
cupied by both system random-
access memory (RAM) and 1/O
ports. Other CPUs have sepa-
rate locations for memory and I/
O. Intel CPUs, for example, have
separate memory and /O loca-
tions. In this architecture, the
CPU and I/O devices share com-
mon address and data buses:
separate CPU control signals de-
termine whether a given opera-
tion occurs in an address space
or an I/O space.

In the 80X86 microprocessor
family, different instructions al-
low the transfer of one, two, or
four bytes of data simulta-
neously between an I/O port and
the CPU's accumulator, or A reg-
ister. The CPU can specify
which port participates in a
transfer in several ways. In as-
sembly language, the port can
be selected by an immediate
value, which is actually part of
the instruction the CPU ex-
ecutes. Another way to select a
port is to preload the DX regis-
ter with the address of the desir-
ed port, and then execute a
slightly different instruction.

Figure 3 shows the register
model for the 8086 CPU. Later
members of the Intel family ex-

LISTING 2—LEDSWING.BAS

100 REM * for ST-1. Purpose: walk a single bit back and forth for display on

110 REM * a LED bar indicator.

Hardware: LED bar indicator, limit resistors.

120 REM * Note: TON (line 180) is loop delay, increase for faster cmptrs.
130 REH iiQ‘t'itiitiittﬁQoioitt.t'ittlQittittiii'!Qtitiﬁiliittitii‘)ti*i****&'

140 REM * AO address output port, TON time LED is on, TOFF time LED is off.
150 REM LR R T T T E R R] an*tiiittittt**Q***I‘ﬁtti*t*******tlli‘nif!ibittit

160 CLS:REM START

170 INPUT" Enter output pert address in decimal ";AO

180 TON=500
190 FOR C=1 TO 7

200 OUT AO,2~C: FOR T=1 TO TON:NEXT T

210 NEXT C
220 FOR C=6 TO 0 STEP -1

230 OUT AO,27C: FOR T=1 TO TON:NEXT T

240 NEXT C
250 GOTO 190

: REM increase to slow cycling. Try 500 to 5000.

e

FIG. 2—PARTS PLACEMENT DIAGRAM

R e

e B s S e i £ .
the test circuit. Parts placement is not

critical; just be sure the power-supply polarity is not reversed.

ACCUMULATOR

BASE

COUNT

DATA

STACK POINTER

BASE POINTER

SOURCE INDEX

DESTINATION INDEX

INSTRUCTION POINTER

STATUS FLAGS

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

mat common to the 8088, 8086, 80186, and 80286 CPUs. The 386 and higher-level CPUs

have 32-bit wide registers.

tend the architecture of the
model, but all are backward
compatible with it. Note that

the main registers (AX, BX, CX,

and DX) are 16 bits wide, but
they can be addressed in 8-bit
blocks: AL and AH (A low and A
high), and so on. The 80386
and more powerful CPUs extend
the concept to the 32-bit level.
The number of bits that can
be transferred to or from an /O
port simultaneously depends
on the CPU’s capability, and on
the interface hardware. This
project’s interface card works at
the byte level, so only eight bits

can be transferred at a time,

through the lower half of the ac-
cumulator, designated AL.

The assembly-language in-
structions for reading and writ-
ing a port specified by the DX
register are, respectively, IN AL,
DX and OUT DX, AL. Those in-
structions assemble to hex-
adecimal machine-code values
EC and EE, respectively. At this
time you should know how to
build an assembly-language ver-
sion of our earlier BASIC test
program. See Listing 3.

The only difference between
the BASIC program and the as-
sembly program is that the as-
sembly program is that the as-

sembly program must preload
the DX register with the desired
hexadecimal port address. In
Listing 3, the first instruction
moves port address 0104h into
the DX register. The second in-
struction transfers the data
byte from the I/O port specified
by DX into register AL. Then the
CPU writes this same value back
out to the same I/O port. Last,
the program jumps back to line
2 to continue to the process in-
definitely. Instead of using a
GOTO statement with a line
number, an assembly-language
program uses labels such as
“loopl” in the example.

To enter and execute an as-
sembly-language program, you
will need a program that can
translate the assembler state-
ments into machine code. This
kind of program is called an as-
sembler. A full-featured as-
sembler such as MASM (Micro-
soft), TASM (Borland), or A86 (a
shareware product by Eric Isaa-
cson) will assign addresses to
labels, keep track of data by
name, and much more. How-
ever, for simple test programs,
those programs are more com-
prehensive than necessary. For
the purposes of this project, the
DOS program DEBUG.COM will
suffice.

Debug

A version of DEBUG is pack-
aged with every copy of DOS.
Unfortunately, it's one of the
most user-unfriendly programs
ever written. To make things
easy on yourself, set up a sepa-
rate directory (or use a separate
floppy disk) just for DEBUG and
the assembly programs that you
will write. DEBUG is normally
installed in your DOS directory,
so you should be able to run it
directly from your test directory.

Now execute the program.
You should see its prompt, a
simple hyphen. Press “A” fol-
lowed by Enter. This puts DE-
BUG into its Assemble mode.

LsTNG s,
ASSEMBLER TEST PROGRAM

mov dx, 104
loopls: @ inal, dx
Sout dx. Al

Jmp loopl

MON SOIU0108(T ‘P61 AN

(2]
-~

& Electronics Now, July 1994

The program will display eight
hexadecimal digits, divided
into two groups of four sepa-
rated by a colon. The value on
the left is called the segment ad-
dress, and the value on the right
is called the offset address. The
segment address, shown here
as “xxxx" might vary from ma-
chine to machine; for small pro-
grams, its value doesn’t matter.
To determine the actual address
associated with a seg-
ment:offset pair, multiply the
segment by 16 (10 hex) and then
add the offset. For example, hex
address 2345:0006 = 23450 +
0006 = 23456.

The offset address, on the
other hand, is critical. If you
don't deliberately specify a val-
ue, DEBUG begins assembly at
location 0100h (256 decimal).
DOS allocates the first 256-byte
block of memory within a given
segment to store information
about small COM programs of
the kind being developed here.
That block is a historical rem-
nant from an earlier program-
ming language, CP/M; it’s of-
ficially called the PSP or Pro-
gram Segment Prefix. Leave the
PSP alone; don't try to place
code or data there. (By the way.
DOS’s EXE file format does not
use the PSP. In addition, COM
programs are limited to 64K of
code space, whereas EXE pro-
grams can be much larger.)

Intel CPUs have a set of regis-
ters called segment registers:
code segment (CS), data seg-
ment (DS), stack segment (SS),
and extra segment (ES). The
segment registers typically
function as indexes into vari-
ous areas of memory. By default,
DEBUG loads the current seg-
ment address into each of those
reﬁisters.

otice that the stack pointer
(SP) is initialized at offset FFFE,
and the instruction pointer (IP,
also called the program counter)
is set to offset 0100.

You now have a 64K block of
memory ready for the entry of
programs. Enter the code
shown in Listing 4 at the DE-
BUG prompt.

Unfortunately, you cannot
use symbolic addresses (e.g.,
the loopl in the previous exam-
ple) with DEBUG; you must en-

ter the actual CPU offset
address. That’s why you see jmp
0103 at offset 0105. After enter-
ing the final instruction, press
Enter again, and you'll return to
the DEBUG prompt.

Before running the program,
save it. First name the program
with DEBUG's “n"” command:

LISTING 4—DEBUG
PROGRAM SW2LED

-al00 <Enter>

XXXx:0100 mov dx, 104 <Enter>
Xxxx:0103 in al, dx <Enter>
xxxx:0104 out dx, al <Enter>
XXxXX:0105 jmp 0103 <Enter>
xXxxx:0107 <Enter>

LISTING 5—DEBUG
PROGRAM SW2LED2

mov dx, 104
loopl: in al, dx
out dx,al

shl al
jnc loopl
mov ah,0
int 21

LISTING 6—C LANGUAGE
PROGRAM

#include <conio.h>
main()
I
int inp(unsigned), outp{unsigned, int)
while(l)
outp(260,inp(260));
_asm moy ah, 11
“asm int 33

-n SW2LED.COM <enter>
Drive and path are optional, but
for this project unnecessary, be-
cause the default directory has
been specifically set aside for
our test programs.

DEBUG's “w"” command
writes current memory con-
tents to disk. However, you
must specify the exact number
of bytes in two registers: BX and
CX. For anything less than 64
Kbytes, BX will contain zero and
CX the remainder. The test pro-
gram is only seven bytes long.
So enter 0000 and 0007 into
registers BX and CX as follows:
-r cx <enter>
CX 0000
:7 <enter>
-r bx <enter>
BX 0000
: <enter>

After you enter the first line
("r cx”), DEBUG displays the
current value of CX and pre-
sents a colon (:) prompt. Enter 7
followed by Enter. Repeat the
process with BX. To accept the
currently displayed value, just
press Enter.

The next step is to write the
file to disk. Press “w" followed by
Enter. Debug will respond with
the number of bytes it is writ-
ing. Verify that the value dis-
played is correct:

-w <enter>
Writing 00007 bytes

Be certain the value is correct
before proceeding—you'll see
why in a moment. Now run the
program by entering “g” (go) at
the prompt. The hardware
should respond just as it did
with the BASIC program; cyc-
ling the DIP switch positions
will cycle the corresponding
LEDs.

There are, however, two major
differences between the BASIC
and the assembly program. The
assembly program runs much
faster, and pressing Ctrl-Break
does not halt the program. With
mechanical switches, the speed
difference is insignificant, but if
you are not able to stop the pro-
gram and regain control, the
only thing to do is reboot.

Now return to the test directo-
ry, load DEBUG, and reload the
test program. Loading a file is a
step that is opposite to writing
it: first name it using “n,” then
load it using “I:"

-n SW2LED.COM <enter>
-1 <enter>

How will you know that the
correct program loaded? Try the
unassemble command, “u.”
The assemble command used
previously converts assembly-
language instructions into hex-
adecimal bytes that are ex-
ecuted by the CPU, the unas-
semble command (sometimes
called the disassemble com-
mand) converts hex bytes into
assembly-language instruc-
tions that can be understood by
people. Issue the following com-
mand to disassemble the test
program:

-u 100 L7 <enter>

The “u” stands for unassem-
ble, 100 is the starting address,
and L7 instructs the program to

i p—

disassemble seven bytes begin-
ning at that address.

DEBUG should display a list
of program instructions identi-
cal to that in Listing 4.

Graceful ending

For the final assembly-lan-

age exercise, the program is
made a little more “intelligent.”
The program can be allowed to
end gracefully, so you don't have
to reset the computer to halt the
program. One way of doing it is
to use DIP switch position8asa
“break’ key. After each pass
through the read-switches,
write-LEDs loop, check switch
8. If it's on, end the program;
otherwise continue.

The shift instruction pro-
vides a simple way to do this in
assembly language. You will
shift bit 8 out of the ac-
cumulator and into a special
register called the carry flag. As
its name implies, the carry flag
is normally used for arithmetic
instructions. But it’s also useful
for determining the flow of a
program based on the state of
some condition—for example,
the on or off state of a DIP
switch.

Listing 5 shows how all these
instructions tie together. As be-
fore, preload DX with 0104h, in-
put the byte from the port at
that address, then write it back
out. Now for a surprise. The “shl
al” instruction causes the CPU
to shift the contents of its AL
register left one bit position,
moving the most-significant bit
into the carry flag. The follow-
ing instruction tells the CPU to
jump back to the input instruc-
tion (at address loopl) if the car-
ry bit is not set—i.e., if the
switch is off. If this is not done,
the program executes a special
pair of instructions that will re-
turn control to the calling pro-
gram.

Following the procedure pre-
viously outlined, enter the pro-
gram in DEBUG, and save it to
disk with a new name
(SW2LED2.COM). Remember
that you must enter the address
of loopl with the hex address,
not the symbolic constant.
Other than that, the program’s
operation is straightforward.

With this introduction, you

should be able to read the docu-
mentation for DEBUG and learn
how to use the rest of its com-
mands. Although cryptic, DE-
BUG is a powerful tool for
writing and debugging new pro-
grams and for exploring your
computer system and its config-
uration. You might want to rec-
ord all of the commands and
parameters on a handy card for
future reference.

The following information re-
lated to the speed difference be-
tween the assembler and BASIC
versions of this program is in-
teresting. On a standard 4.77-
MHz PC, the BASIC program
loop executes in about 2.25 mil-
liseconds. By contrast, the as-
sembler version takes about 9
microseconds. In other words,
the assembly-language pro-
gram ran about 250 times faster
than the BASIC program!

GLOSSARY OF TERMS

Assembler—A computer program that
converts or translates assembly lan-
guage source code instructions into ma-
chine language.

Compiler—A computer program or cir-
cuitry that translates a high-level lan-
guage into an executable program in a
single operation. See assembler and
interpreter.

Global variable—A variable in a com-
puter program that can be shared by any
object or subroutine within the program.
High-level language—An application-
oriented programming language, as dis-
tinguished from a machine-oriented pro-
gramming language. It is also termed a
computer language. Examples are
BASIC and C.

Interpreter—A computer executive
routine that translates a program in
high-level language or code into ma-
chine language or code. Unlike a com-
piler, the interpreter translates and
executes one line at a time. See
assembler and compiler.

Machine code—Instructions executed
by a computer processor. It is also called
machine language.

Machine instruction—An instruction
written in a programming language that
a computer can recognize and under-
Register—A circuit in computers or
other digital circuitry that holds data in
binary format for process or transfer.
Source language—The language in
which a problem is programmed for a
computer. It must be translated into an
object program in machine language by
an assembler, compiler, or interpreter.
Source program—A program that is
written in source language or code.

C language programming

Earlier BASIC and assembler
were defined as opposite ends of
the programming-language
spectrum. A broad range of
other languages occupy posi-
tions all along that speed-per-
formance spectrum. For exam-
ple, C language has gained
tremendous popularity during
the past decade. Like BASIC, it
is a high-level language, but it is
really closer in many of its
characteristics to assembly lan-
guage. Indeed, C has been de-
scribed as a “portable assembly
language.”

C is a compiled language like
FORTRAN, COBOL, Pascal, and
even some versions of BASIC.
You start by writing source code
that is similar to BASIC. How-
ever, C has no interpreter that
runs it one line at a time. In-
stead, the source code is com-
piled into machine language
that the CPU executes directly.
As part of the compilation pro-
cess, the compiler flags syntax
errors (e.g., typos, undeclared
variables, and misspelled lan-
guage elements), that must be
corrected before the machine
code will be generated. Next,
you have the option of linking
the machine code with other
predefined code libraries. When
the process is complete, you will
have a stand-alone file that will
run from the DOS prompt.

Modern C development en-
vironments combine all the
tools necessary for editing,
compiling, and linking C code
into a single, integrated de-
velopment environment (IDE).
The preeminent products in
this category include Borland’s
Turbo C and Microsoft’s Quick
C. For entry-level programmers,
an IDE is recommended. Even
experienced programmers can
significantly increase their pro-
gramming productivity with an
IDE.

Both Quick C and Turbo C in-
clude a special feature called in-
line assembly, which allows
you to embed assembly-lan-
guage programming instruc-
tions in the middle of a C
program. Inline assembly thus
gives you the best of both
worlds: the low-level hardware

Continued on page 89

& moN sowonoe|3 ‘661 AIne

PC 1/0 BREADBOARD

continued from page 59

access features of assembly,
with the high-level control and
error checking features of C.
(Note that Turbo C requires a
separate product, Turbo As-
sembler, to make use of inline
assembly; Quick C has every-
thing you need built in.)

The final example, Listing 6,
is a Quick C version of the
switches-in, LEDs-out pro-
gram. The first line of the pro-
gram instructs the compiler to
include a standard library of
functions for controlling the
keyboard and screen. Every C
program has a main function,
which begins on the next line.
Within the main function, two
integers are defined: inp and
outp. They correspond to the in-
put port and the output port,
respectively. It will loop forever
(or until someone presses Ctrl-
Break) reading the input port,

writing that value to the output
port, and then checking for a
key press entry through DOS.

The call to DOS has interest-
ing features. The purpose of
DOS function 11 (OBh) is to re-
port if a key press entry is wait-
ing. When engaged in that
function, it checks for a Ctrl-C
or Ctrl-Break; either will termi-
nate the program.

Wrapping up

The full potential of the com-
puter (PC or mainframe) can be
realized only with effective sup-
porting software. Your success
in any technical field today re-
quires that you have a working

ORDERING INFORMATION

The following items are available
from DAGE SCIENTIFIC, P.O. Box
144, Valley Springs, CA 95252, (209)
772-2076:
o Complete kit including manual and
all parts (model ST-1)}—$119
e Set of 2 PC boards and manual
(model ST-2)—$40
All orders add $3.95 shipping and
handling. CA residents add sales tax.

knowledge of software. This has
been a brief, and it is hoped,
painless introduction to pro-
gramming. You've seen that as-
sembly language offers power
and speed, but it requires a lot
of planning and intimate
knowlédge of its host micro-
processor to be used effectively.
BASIC, on the other hand, is
easy to learn and use, but it suf-
fers from low speed, and is bur-
dened with antiquated lan-
guage constructs. For many
people, C is the ideal compro-
mise. It allows low-level access
to the hardware when you need
it, while simultaneously provid-
ing all the advantages of a high-
level language. C is, however,
more difficult to write (and read)
than BASIC.

In the next part of this article,
you will learn how to put the
hardware and software to work
in a practical project: a flexible,
configurable EPROM program-
mer. The control software is in
BASIC. Q

WHAT'S NEWS

continued from page 85

3.8 volts, compared with the 1.2
volts of the other cells.

The solid lithium-ion cells can be
stacked and connected together to
produce batteries with higher volt-
ages. Because the cells are thin and
flexible, they can be formed into
prismatic batteries of almost any
shape needed. The battery form
would not be restricted by the cylin-
drical shapes typical of other re-
chargeable cells. Bellcore says that
its lithium-ion cells can be dis-
charged and charged several hun-
dred times with less capacity loss
than the other rechargeable cells.

Lithium-ion batteries with liquid
electrolytes have been on the mar-
ket for only about two years, but
they are still developmental models
for limited applications. Japan start-
ed a national project to develop dis-
tributed lithium-ion battery storage
technology in 1992.

Automated hotel check-ins
Hyatt Hotel Corporation expects

that its “Touch and Go Check-In"
machine will do for hotels what the
automatic teller machine (ATM) did
for banking. The check-in machine,
which looks and works like an ATM,
allows guests with reservations and
credit cards to bypass lines at the
front desk and check themselves

B 535 S e e 6 B B8 e, o

AN AUTOMATED HOTEL registration
machine, part of Hyatt Hotel's Touch and
Go Check-In system, speeds up guest
registration and checkout.

into their rooms directly.

Two machines are now being test-
ed at the Hyatt Regency O'Hare
hotel in a Chicago suburb and the
Hyatt Regency Atlanta in Atlanta,
with an eye toward their eventual
use chain-wide.

Upon arrival, a guest inserts his
credit card into the machine. This
causes his previous room, bed, and
other check-in selections to appear
on the machine’s monitor for his ap-
proval. When this procedure is com-
plete—typically in less than 90
seconds—the machine dispenses
one or more room keys and a
printed “passport” containing the
room number.

At check-out time, the guest can
use the machine to approve and pay
for room charges that are displayed
on screen. When that transaction is
complete, the machine prints out a
receipt.

Hyatt Hotel plans to expand its
Touch and Go Check-In program to
other hotels this year. A future ser-
vice that could possibly be per
formed by the machine would be
interactive participation in the selec-
tion and the making of reservations
for local restaurants. Q

@ MmoN sowonos|3 ‘$661 ANy

l:eam how fish
with our EPROM
programmer.

BUILD THIS

PCI/O

BREADBOARD

DAVE DAGE

GIVE A MAN A FISH AND YOU'LL FEED
him for a day; teach a man to
fish and you'll feed him for life.
That old proverb can be applied
to EPROMS, too. Give a man an
EPROM programmer and he
can program some devices.
Teach him how to build a pro-
grammer, and he can program
any EPROM he will encounter.

You can build a sophisticated
EPROM programmer on your
PC I/O breadboard with nothing
more than a few jumper wires.
The PC /O breadboard was de-
scribed in the June 1994 issue.
An article in the July issue
showed how to program it. The
breadboard contains ten fully
decoded and latched /O ports,
controlled by a simple PC inter-
face card. This third and final
installment shows that the
breadboard is not just for build-
ing “toy” circuits, but can be
put to real-world use as well.
The EPROM programmer is
fully functional, and can read,
write, program, copy, and verify
EPROMs ranging from a lowly
2716 all the way up to a 27512.
The popular 27128 is used here
as an example.

With what you'll learn here,
adapting the program to new
types of EPROMs will be simple.
By the way, to make sure there
are no misunderstandings,
we'll use the expression burn to
signify programming the
EPROM, and program to refer to
the BASIC software that con-
trols the programmer.

Two notes about the software:
1. It will run under either GW-
BASIC (supplied with MS-DOS
prior to version 5) or QBASIC
(supplied with DOS 5 and later
versions). 2. The complete pro-
gram is too long to print here.
However, significant portions of
the code will be explained, so
that you'll know how it works.
You can obtain the complete
listing from the Electronics
Now BBS (516-293-2283, V.32,
V.42bis—the program is called
EPROMBRN.BAS, and is part
the PCIO.ZIP file), or with a kit
of parts from the author.

Addressing the EPROM

First set up the hardware.
Figure 1 shows the hookup be-
tween the ST-1 breadboard and
the 27128 28-pin EPROM. The
port numbers shown in the fig-
ure and in the program listings
represent the decimal values of
the default base /O port (260)
provided by the breadboard. If
the board is not set to the de-
fault address, substitute the
values in all diagrams and soft-
ware. (Part 1 of this series de-
tailed base I/O port selection.)

The 27128 has 128K bits of
memory, accessible as 16,384
(16K) eight-bit bytes. Address-
ing 16K of memory requires 14
address lines (214=16,384).
Output port 260 drives the
eight low-order address lines
(a0-A7), and output port 261
drives the six high-order ad-
dress lines (as-a13), leaving the
two highest bits of output port
261 unconnected.

Each successive byte in the
EPROM can be addressed, start-
ing at O, as follows: Assume all
14 address lines are low. Incre-
ment the value at port 260 until
all eight bits are high (i.e., the
counter hits 255). Then put a 1
in 261, and a 0 in 260. Again
increment through all values at
260, increment 261, and again
put a 0 in 260. Continue in this
fashion until the counter for
261 reaches 64, at which point
you're accessing the highest ad-
dress in the EPROM (64 x 256
= 16,384). Then reset both
counters to O and start over.

The way to do this in software
is with a pair of nested FOR/
NEXT loops, as shown in List-
ing 1. The inner loop, which ad-
dresses port 260, counts from 0O
to 255; the outer loop counts
from O to 63, addressing port
261.

This simple routine can be
used for reading, verifying,
burning, or copying the
EPROM, by placing correspond-
ing functions within the inner-
most loop (between lines 230
and 400). Note that the number
at the head of each line is re-
quired only with GW-BASIC:
neither compiled BASIC nor
QBASIC requires line numbers.

Data flow

Addressing each location in
the EPROM is easy. The next
question is how to get data into
and out of a specified location. A
mini data bus is formed by con-
necting the EPROMS eight data
lines to output port 262 and in-

MON S2IUONO8I] ‘pE6] Isnbny

4

Electronics Now, August 1994

b3

Vee
o _l:zt'i"cc
BREADBOARD GRD
L 31a7
ge 5 :“g
OUTZ:.?RT o o— {.,:g
ve g-m'z
oo e
F. L]
OUT PORT .0 a1z
= i
e &%o
5o A8 27128
@ @ CUTPORT22ENABLE e
o e 19108
owzgepm s i B
e g2
o e 11p0
oo |
ourporr| ® 2 o G
% (OO]
“V" 27 PG
% &
.. Yvep
ity
o0
g PROGRAM
INPORT|| @@ | OVpp
260 o
e — Poiifing -
g —

FIG. 1—27128 EPROM HOOKUP to the ST-1 breadboard appears here. The same

hookup works for a 2764.

put port 260. The only “trick” is
that the EPROM’s outputs must
never be activated at the same
time as those of port 262. For-
tunately, data flow can be con-
trolled with just two pins: the
EPROM’'s output-enable (OE)
line and the breadboard’s en-
able line.

To read data from the EPROM,
you must enable its output by
bringing pin 22 low, while at the
same time disabling port 262 by
bringing its control pin high.
Then BASIC’s input port in-
struction (INP) can read data
from the EPROM into variable V,
as follows:

300 V = inp(260)
Conversely, output variable V to
the EPROM like this:

310 out 262, V

Control lines

Of course, an OUT instruc-
tion by itself will not burn any
data into an EPROM; the tech-
nique for doing so will be de-

scribed momentarily. For now,
note that port 263 drives the
EPROM' output enable (OE, pin
22), chip enable (CE, pin 20),
and program pulse (PGM, pin
27), as shown in Fig. 1. Port 263
also controls port 262 enable
line. The odd-numbered bits of
263 are configured as follows:
D1 (pGm), D3 (CE), D5 (OE), and
D7 (PORT 262 ENABLE). All four
signals are active-low. Bits DO,
D2, D4, and D6 are not used, so
they can be set to any arbitrary
value. You might want to make
them the complements of DI,
D3, D5, and D7. Then, if extra
hardware is ever needed. both
the active signals and their
complements will be available.
In the inactive state, all four
control signals must be high. To
determine what value to send to
port 263, place 1's in bit posi-
tions 1, 3, 5, and 7, and O’ in
positions 0, 2, 4, and 6. Convert
the resulting eight-bit binary
number (1010 1010) to decimal

(170); that value must be sent to
port 263 before the EPROM is
installed. In fact, whenever a
procedure completes, you
should return output 263 to the
inactive state, as follows:
100 out 263, 170

To read a byte from the
EPROM, output enable (G&) and
chip enable (CE) must be acti-
vated (pulled low). Plugging the
two O%s in along with their com-
plements gives 10010110 (150).
Thus, to activate read mode:

150 out 263, 150

To burn a byte into the
EPROM, the program prompts
the user to apply the program-
ming voltage, and then waits for
a response. After receiving the
user’s response, the program
enables port 262 and the
EPROMS chip-enable line. Then
(and only then) can it apply the
50-millisecond burn pulse.

Activating port 262 and the
EPROM’s chip-enable line
equates to 01100110 (102). To
perform the burn, that value

LISTING 1—EPROM
ADDRESSING

200 for HI = 0 to 63

210 out 261, HI

220 for LO = 0 to 255

230 out 260, LO

e some useful function
400 next LO
410 next HI

LISTING 2—EPROM BURNING

340 print "APPLY PROGRAMMING VOLTAGE NOW"
«« wait for positive response

350 out 262, V rem out value to burn

360 out 263, 102 rem get ready to burn

370 out 263, 101 rem turn on PGM (burn EPROM)
-+ wait for 50 milliseconds

380 out 263, 102 rem shut off PGM

[X
®0— T
CMI;:?]!I o0 : 27256
e e®
LR J
[
[
- o
[N
oo 25
OUTQQPQPHT (H.CBPGM
* :

FIG. 2—27256 EPROM HOOKUP: Only
the differences between the 27128 and
the 27256 are shown.

»

must be changed to 01100101
(101) for 50 milliseconds, then
back to 102. Listing 2 shows the
entire sequence, except the 50-
millisecond delay, which will be
described next. For now, note
than Vg, can remain on, and
the actual value of the currently
addressed byte in the EPROM
can be read as described pre-
viously. If the written value
equals the current value, pro-
gramming was therefore suc-
cessful, so the next address can
be selected.

The 50-millisecond delay

The most difficult part of this
whole project is generating an
accurate time delay. The prob-
lem is how to guarantee the ac-
curacy of the generated timing
pulses. The simplest kind of de-
lay is a do-nothing loop that in-
crements a counter to some
value. By adjusting the value,
the delay can be made longer or
shorter. That approach is not
the best solution because it is
CPU-dependent. That is, it de-
pends on the type of CPU and its
clock speed. Thus a program

FIG. 3—27512 EPROM HOOKUP: Only
the differences between the 27128 and
the 27512 are shown.

lines are needed.

FIG. 4—2716 EPROM HOOKUP: Note that power moves to pin 24, and fewer address

LISTING 3—ASSEMBLY LANGUAGE DELAY ROUTINE

FA CLI : ; stop interrupts

BAO701 MOV DX, 0107 ; control address in hex
BO65 MOV AL, 65 ; load control for pulse
EE OUT DX,AL ; start PGM pulse

BB1000 s MOV AX, 0010 ; outer loop start value
B90000 OUTLOOP: MOV CX, 0000 ; max value on inner loop
49 INLOOP: DEC CX ; start inner loop

75FD JNZ INLOOP

48 DEC AX ; start outer loop

75F7 JNZ OUTLOOP

BO66 MOV AL, 66 ; load off pulse value
EE OUT DX,AL ; turn off pulse

FB STI ; allow interrupts

CB RETF ; return

that runs fine on a 4.7-MHz PC
might not do so well on a 66-
MHz 486.

DOS interrupts are an addi-
tional complication. If an inter-
rupt (e.g., for disk access)
occurs during the loop, the time
would increase unpredictably.
The bottom line is that, as good
as it is for other things, BASIC
is just not suitable for generat-
ing accurate time delays. How-

ever, BASIC provides a fairly
clean way of incorporating
short assembly-language pro-
grams that can accomplish that
type of task.

The assembly-language rou-
tine shown in Listing 3 com-
bines line 370, the 50-millise-
cond pulse, and line 380 from
the previous listing. First it
turns off all interrupts, then it
outputs the burn command (65

& mon sowone(3 ‘re6L Isnbny

Electronics Now, August 1994

E

100

e 2732

- OUT PORT i

ST .. . = A1

®

e £ 4
Efigsi i
e e —1/1_
(e e 25BN pp
e e® 2 cE/Pam
le'e - y'=

hex) to port 263 (107 hex). Next
it wastes time in two loops,
shuts off the burn signal (66
hex), turns interrupts back on,
and then returns control to the
BASIC program.

So how do you integrate an
assembly-language program
with a BASIC program? Convert
the hexadecimal machine in-
structions in column 1 of List-

Vee at
MPS4126
r 1
R1 b3
22K
5 6
iCl¢ R2
17 7406 22K

FIG. 5—2732 EPROM HOOKUP: Only the
differences between the 2716 and the
2732 are shown.

ing 3 to decimal, and then
include them in the BASIC pro-
gram via DATA statements.
Then read the data into a
pseudo variable, MCS. Then as-
sign the variable BASE to where
MCS starts in memory. To ex-
ecute the program, all you need
to do is execute a CALL BASE
statement. Listing 4 shows how
it all works. Note that the loop
values are defaults; the BASIC
program pokes updated values
into the appropriate locations,
depending on the desired pulse
length.

As the routine stands now; it
will generate a delay of 5 to 6
seconds on an 8088, and much
shorter delays on faster ma-
chines. The program calculates
how many loops per second it
takes to produce a five- to ten-
second time delay on any specif-
ic machine. Then from that val-
ue, the program calculates
constant LM (loops/millise-
cond). Do not alter your “turbo”
switch after the program has
calculated that value. The actu-
al pulse length (in milliseconds)
is stored in constant PL, and de-
faults to a value of 50. However,
by altering that value, it is pos-
sible to generate any time delay
of about 0.1 milliseconds or lon-

oL

The only down side to that de-
lay method is that your comput-
er is almost entirely consumed
with pulse generation. DMA is
still active, but under normal
circumstances, the only DMA
channel that should be operat-

LISTING 4—INTEGRATING THE ASSEMBLY LANGUAGE ROUTINE

7050 FOR X=1 TO 30 '# of code bytes to read

7060 READ N

7070 MC$=MC$+CHRS (N) 'generates string of machine code

7080 NEXT X

7090 PTR=VARPTR{MCS) 'use to find address of code
7100 BASE=PEEK (PTR+1)+PEEK (PTR+2)*256 'start address of assembly program
7110 NOINT=BASE+l 'skip 1lst instr which disables interrupts

7140 CALL NOINT

7610 DATA 250 , 166 , 7 , 1 , 176 , 101 , 238 , 184 , 16 , ©
7620 DATA 185 , 0 , O, 73 , 117 , 253 , 72 , 117 , 241, 176
7630 DATA 102 , 238 , 251 , 203 , 244 , 244 , 42 , 60 , 52 , O

LISTING 5—ACCESSING DATA

180 def seg = &H60000 rem initialize segment pointer
190 out 262, 150 rem initialize to read EPROM

... then "inside the address loops"

240 V = inp(260) rem read value

250 poke (HI*256 + LO), V rem stores value to memory

?
ing is that controlling memory
reiresh. At worst, memory re-
fresh causes a one- to two-mi-
crosecond jitter in the delay
pulse. Although it’s viewable on
a scope, that jitter is not a con-
cern when burning EPROMs.

Data storage

Data that will be put into or
taken out of an EPROM must be
stored in memory—but where?
BASIC doesn't permit dynamic
memory allocation as C or Pas-
cal do. So we have arbitrarily
chosen absolute address 60000
hex. If you run BASIC on a ma-
chine without a lot of TSRs and
device drivers installed, it will
probably reside well below
50000 hex, including its stack.
As long as you have at least
512K of memory, the area from
60000 to 70000 hex should be
safe for storage. Admittedly,
this is not the most elegant
memory-allocation scheme, but
it does work.

Data can come from many
sources; however, the only
source discussed here will be
another EPROM. If you want to
burn an EPROM with data from
another source, you have to get
it loaded into memory at ad-
dress 60000 hex. After the data
is loaded, you can use DOS’s
DEBUG program to modify it.
Listing 5 shows how to copy
data from an existing EPROM.
After the contents of an EPROM
is loaded into memory, it'sasim-
ple matter to save it as a file.
Then next time it's needed, it
can be reloaded without using
the original EPROM.

Other EPROMs

Until now, this discussion
has centered on the 27128. The
good news is that the same prin-
ciples also apply to the 2764,
27256, and 27512 devices, all of
which are packaged in a 28-pin
DIB The 2764 can be viewed as
half of a 27128. The 2764 uses
the same wiring diagram; the
only difference being that high-
order address line Al3 (pin 26)
has no function.

On the other hand, moving
up to the next largest device (the
27256) requires another ad-
dress pin. Since all 28 pins are
already used, the 27256 multi-

plexes the chip-enable line (pin
20) with the program pulse, as-
signing address Al4 to pin 27.
The only change to the program
is that the initialization con-
stant for a read (as shown in
Listing 5) changes from 150 to
149. Figure 2 shows how to up-
date the wiring diagram origi-
nally shown in Fig. 1 for a
27256.

Moving up to the 27512 re-
quires yet another pin. This one
combines output enable (pin
22) with Vg, and assigns ad-
dress line Al5 to pin 1. Pin 22
must now cycle between zero
volts (output enable) and Vpp
To provide program control over
that capability, additional com-
ponents must be added, as
shown in Fig 3. Four parts are
required: an open-collector hex
inverter (provided by a 7406),
two 22K resistors, and a switch-
ing transistor. The EPROM read
procedure is identical to that for
a 27256, but the verify-during-
burn procedure must be
changed to first lower Vg, to
zero. The verify sequence is as
follows: 170, 150, 149, 150, 170.
The burn sequence remains the
same for all EPROMs.

The less-dense 24-pin
EPROMs follow the same pin
usage as outlined above, except
that four fewer address lines are
needed. The 2716 (shown in
Fig. 4) follows the 27256, while
the 2732 (shown in Fig. 5) fol-
lows the 27512. In addition, the
2732 requires extra control cir-
cuitry like the 27512. The only
software difference lies in the
address loop counters.

The complete program

Now you know how to “fish.”
But in case you're looking for a
“canned” solution, a full-func-
tion BASIC program has been
written for burning all the fol-
lowing EPROM types: 2716,
2732, 2764, 27128, 27256, and
27512. As with many programs,
much of the code is concerned
with the user interface. The pro-
gram is menu-driven; it incor-
porates many error-trapping
routines. You can download a
copy of the program from the
Electronics Now BBS as part of
the PCIO.ZIP file. Try it, modify
it, improve it.

Before starting the program,
wire the ST-1 breadboard for the
type of EPROM to be burned,
but do not install the EPROM
yet. Make a special directory for
EPROM burning, and copy
EPROMBRN.BAS, DE-
BUG.EXE, and GWBASIC.EXE
into that directory. Make this
your current directory and then
run GWBASIC EPROMBRN
from the DOS prompt.

The program begins by cal-
culating loops/millisecond for
your machine. This may take
up to 20 seconds, so be patient.
Remember not to change your
turbo switch after the speed has
been calculated. The program
then presents you with a menu
for choosing the type (size) of
EPROM, and the burn voltage.
The value you enter for size will
affect the address loop con-
stants, but the burn voltage val-
ue is displayed only as a
reference. Note that EPROMs re-
quiring a 12.5-volt burn voltage
should work fine with the 12
volts available on the bread-
board.

Next you’'ll see the main
menu, which will allow you to
copy, load, save, verify, and burn
an EPROM. An additional op-
tion allows you to run DEBUG
from within the programmer,
for purposes of altering memory
contents. Press the first letter of
the desired command, and
you'll enter the appropriate sub-
menu. At this level, you must
follow all entries with a carriage
return. Typing an incorrect val-
ue or no value at all will return
you to the main menu.

As discussed above, all data
must be stored in memory at ad-
dress 60000 hex. The typical
method of obtaining that data
would be to copy it from an ex-
isting EPROM using the copy
command. Follow the screen

ORDERING INFORMATION

The following items are available from
DAGE SCIENTIFIC, P.O. Box 144,
Valley Springs, CA 95252, (209)
772-2076:
® Complete kit including manual and
all parts (model ST-1)—$119
® Set of 2 PC boards and manual
(model ST-2)—$40

All orders add $3.95 shipping and han-
dling. CA residents add sales tax.

commands by installing the
source EPROM, then select Go.
The entire EPROM will be cop-
ied into memory, and a simple
arithmetic checksum will be
displayed in both decimal and
hex.

You can modify the EPROM
values in that memory image
using DEBUG. Return to the
main menu and press D. The
program will pass control to DE-
BUG. Now you can examine and
change memory, using the pro-
cedures described in your DOS
manual. When done, press Q
followed by Return, and you'll
fall back into the main menu.

Data stored in memory can be
saved to a file by selecting Save
EPROM from the main menu.
Enter an eight-character fil-
ename with no extension; the
program automatically adds the
extension ROM. Regarding the
save, you should know that
BASIC can save a maximum of
only 64K bytes of data, several
bytes of which are reserved for
header information. Hence
when saving a 27512 EPROM
(64K), the program saves the file
in two pieces, one with the ex-
tension ROM, and the other
with the extension RON.

After data has been saved to a
file, it can be recalled with the
LOAD EPROM command. Enter
the filename (with the .ROM ex-
tension), or press L to list all
(*.ROM) files in the current di-
rectory. If a program has been
split, enter only the filename
with the ROM extension; both
parts will be loaded. Whenever
the main menu is displayed,
you can obtain a checksum of
either the currently installed
EPROM or the current memory
data by selecting Verify.

With a valid data file in memo-
ry. you can burn an EPROM by
selecting Burn EPROM from the
main menu. The program will
optionally verify that a device
has been erased, then beep and
request that you apply the se-
lected burn voltage. Press B to
burn the data into the device.
The program burns the first
byte and checks for success. If
successful, the program con-
tinues on to the next byte, and
so on until all bytes in that seg-
ment have been burned. Then

% MON sO0N08|T ‘bE6L Isnbiny

Electronics Now, August 1994

the segment number is incre-
mented and the process re-
peats. After burning each seg-
ment, the program displays the
remaining number of segments
on the screen. That gives an in-
dication that everything is
working; it also helps you gauge
how long the entire process will
take. You can stop the program
between segments by pressing
S. After completely burning the
EPROM (or after you press S5),
the program will beep to remind
you to remove the burn voltage.
Additional EPROMs may be

burned using only this menu
selection.

What next?

Although it’s simple, the 50-
millisecond programming
method has its down side. It
could take seven minutes to
burn a 2764, and as long as an
hour for a 27512. That may be
acceptable for occasional use,
but you may get impatient.

Most manufactures have de-
veloped fast programming al-
gorithms, which typical com-
mercial EPROM burners call

L3
£

High Performance Program-
ming. This type of algorithm de-
livers a variable number of
short (0.1-1.0 millisecond)
pulses, with the number of
pulses depending on when the
to-be-programmed value
changes. Higher voltages and
closer tolerances are required
for Vo and Vpp Writing the
necessary loops is easy using
GW-BASIC, as is generating the
short pulses. The limiting fac-
tor is the overall slow-running
interpreted GW-BASIC. Maybe
now it's time to change to C.

AMATEUR TY
continued from page 52

Next set both C19 and C26 on
the power amplifier to mid posi-
tions (capacitor plates should
be halfway meshed). Apply 13.8
volts DC to the transmitter.
First adjust C19 and C26 quick-
ly for maximum power output,
and then adjust C13 and Cl4.
Repeat these adjustments for
maximum RF output. Repeat
this with the higher crystal fre-
quencies (434 or 439.25 MHz).
If no output is seen at first, ad-
just C13 and C14 before read-
justing C19 and C26.

At least 5 watts output should
be obtained at each crystal fre-
quency after their final adjust-
ments. The power amplifier will
draw about 700 milliamperes
under these conditions. If 5
watts cannot be obtained,
change the sizes of L8 and L9.
Cut the loops with diagonal cut-
ters, overlap the cut ends, and
solder them together. If 5 watts
is still not obtained, check C20
to C23, and all components in
the collector circuit of Q9 for
correct values. Expect the heat-
sink to become warm after
about 5 minutes operation, but
not hot enough to make it pain-
ful to touch. Vary R18; it should
control the RF output smoothly
from O to 5 watts.

Note: You can skip this sec-
tion if you are either building
the 5-watt transmitter or any of
the %-watt versions.

To check out the downcon-
verter, first connect an RF

2 3/4 INCHES

COMPONENT SIDE of the Mini ATV board.

probe, RF millivoltmeter, TV re-
ceiver, or monitor to the down-
converter that will respond to
61.25 MHz (CH 3) or 67.25 MHz
(CH 4). Next, apply +13.8 volts
to both the junction of R43,
C55, and R52, and the free end
of R40. Verify the voltages given
in Table 1. Set R50 so that about
+5.5 to +6 volts is present on
the wiper of R50.

Next, adjust C59 for a 378-
MHz reading on the counter.
Verify that R50 will vary the fre-
quency from about 367 MHz to
382 MHz if channel-3 inter-
mediate frequency (IF) is used.
If a channel-4 IF is desired, set
C59 for a frequency range of 361
to 376 MHz. A 15-MHz change
in local-oscillator frequency is
desirable, although 13 MHz will
be acceptable. If you cannot ob-

2 3/4 INCHES

SOLDER SIDE of the Mini ATV board.

tain this reading, C 58 can be
replaced with a 6.8 pF capacitor
if a wider tuning range is
needed.

Next, set trimmer capacitors
C43, C46, and C51 to midway
(capacitor plates half meshed).
With the L.O. set at 378 MHz
(channel 3 IF) or 372 MHz
(channel 4 IF), apply a 439.25-
MHz signal (=2 MHz) to the an-
tenna lead. The signal level
should initially be about 20 mil-
livolts. Tune C43, C46, and C41
for maximum IF output at 61 or
67 MHz as seen on the indicator
connected to the converter out-
put. Reduce the input signal to
the converter as required. Next,
peak the slug in L20 for max-
imum output. This is a broad
adjustment. You should obtain

Continued on page 74

